What is Hashing?

Sequential search reguires, on the average O(n) comparisons to locate an element. So many
comparisons are not desirable for a large database of elements.

Binary search reguires much fewer comparisons on the average O (log n) but there is an additional
reguirement that the data should be sorted. Even with best sorting algorithm, sorting of elements
require O(n log n) comparisons.

There is another widely used technique for storing of data called hashing. It does away with the
requirement of keeping data sorted (as in binary search) and its best case timing complexity is of
constant order (0{1)). In its worst case, hashing algorithm starts behaving like linear search.

Best case timing behavior of searching using hashing = Of 1)

Worst case timing Behavior of searching using hashing = O[n)

In hashing, the record for a key value "key", is directly referred by calculating the address from the key
value. Address or location of an element or record, x, is obtained by computing some arithmetic
function f. flkey) gives the address of x in the table.

Record

f{)=>Address ——— b

¥
¥

Hash Tabl
Mapping of Record in hash table ash fame

Hash Table Data Structure:

There are two different forms of hashing.

1. Open hashing or external hashing

Open or external hashing, allows records to be stored in unlimited space (could be a hard disk). It places
no limitation on the size of the tables.

2. Close hashing or internal hashing

Closed or internal hashing, uses a fixed space for storage and thus limits the size of hash table.

1. Open Hashing Data Structure

buckst table
header List of Elemenits

k.
¥

The open hashing data organization

¢ The basic idea is that the records [elements] are partitioned into B classes, numbered 0,1,2 ... B
+ A Hashing function f{x) maps a record with key n to an integer value between 0 and B-l.
& FEach bucket in the bucket table is the head of the linked list of records mapped to that bucket.

2. Close Hashing Data Structure

0 b ¢ A closed hash table keeps the elements in the bucket itself.

1 & Only one element can be put in the bucket

* |fwetry to place an element in the bucket f(n) and find it already holds
an element, then we say that a collision has occurred.

3 ¢ Incase of collision, the element should be rehashed to alternate empty

location f1{x), f2(x), ... within the bucket table

* In closed hashing, collision handling is a very important issue.

Hashing Functions

Characteristics of a Good Hash Function

A good hash function avoids collisions.

A good hash function tends to spread keys evenly in the array.

A good hash function is easy to compute.

Different hashing functions

Hmh e WM

Division-Method
Midsquare Methods
Folding Method

Digit Analysis

Length Dependent Method
Algebraic Coding
Multiplicative Hashing

Division-Method

L]

In this method we use modular arithmetic system to divide the key value by some integer divisor m
(may be table size).
It gives us the location value, where the element can be placed.
We can write,
L=(Kmodm)+1
where L == location in table/ffile
K == key value
m == table size/number of slots in file
Suppose, k=23, m=10then
L=(23 mod 10) + 1= 3 + 1=4, The key whose value is 23 is placed in 4th location.

2. Midsquare Methods

L]

In this case, we square the value of a key and take the number of digits required to form an address,
from the middle position of squared value.

Suppose a key value is 16, then its square is 256. Now if we want address of two digits, then you
select the address as 56 (i.e. two digits starting from middle of 258).

3. Folding Method

Most machines have a small number of primitive data types for which there are arithmetic
instructions.

Frequently key to be used will not fit easily in to one of these data types

It is not possible to discard the portion of the key that does not fit into such an arithmetic data type

¢ The solution is to combine the various parts of the key in such a way that all parts of the key affect
for final result such an operation is termed folding of the key.
¢ That is the key is actually partitioned into number of parts, each part having the same length as that
of the required address.
¢ Addthe value of 2ach parts, ignoring the final carry to get the required address.
This is done in two ways :
o Fold-shifting: Here actual values of each parts of key are added.
» Suppose, the key is : 12345678, and the required address is of two digits,
* Then break the key into: 12, 34, 56, 78.
» Add these, we get 12 + 34 + 56 + 78 - 180, ignore first 1 we get 80 as location
o Fold-boundary: Here the reversed values of outer parts of key are added.
= Suppose, the key is - 12345678, and the required address is of two digits,
* Then break the key into: 21, 34, 56, 87.
» Add these, we get 21 + 34 + 56 + 87 : 198, ignore first 1 we get 98 as location

Digit Analysis

¢ This hashing function is a distribution-dependent.

¢ Here we make a statistical analysis of digits of the key, and select those digits (of fixed position)
which occur quite frequently.

* Then reverse or shifts the digits to get the address.

¢ For example, if the key is - 9861234 If the statistical analysis has revealed the fact that the third and
fifth position digits occur quite frequently, then we choose the digits in these positions from the key.
So we get, 62. Reversing it we get 26 as the address.

Length Dependent Method

¢ In this type of hashing function we use the length of the key along with some portion of the key j to
produce the address, directly.

¢ In the indirect method, the length of the key along with some portion of the key is used to obtain
intermediate value.

Algebraic Coding

¢ Here an bit key value is represented as a polynomial.

¢ The divisor polynomial is then constructed based on the address range required.

¢ The modular division of key-polynomial by divisor polynomial, to get the address-polynomial.
e Let fix) = polynomial of n bit key = a, + 8% + . + 36"

o dix) = divisor polynomial = x* + d, + dox + .+ dx™

then the required address palynomial will be f{x) mod d(x)

Multiplicative Hashing
This method is based on obtaining an address of a key, based on the multiplication value.

« [f k is the non-negative key, and a constant ¢, {0 < c = 1), compute kc mod 1, which is a fractional part of
kc.

« Multiply this fractional part by m and take a floor value to get the address

« Lm(kcmodl)d

s O<h{K<m

Collision Resolution Strategies (Synonym Resolution)

« Collision resolution is the main problem in hashing.
« [f the element to be inserted is mapped to the same location, where an element is already inserted then
we have a collision and it must be resolved.
« There are several strategies for collision resolution. The most commonly used are :
1. Separate chaining - used with open hashing
2. Open addressing - used with closed hashing

1. Separate chaining
* In this strategy, a separate list of all elements mapped to the same value is maintained.
* Separate chaining is based on collision avoidance.
+ |f memaory space is tight, separate chaining should be avoided.
+ Additional memaory space for links is wasted in storing address of linked elements.
¢ Hashing function should ensure even distribution of elements among buckets; otherwise the timing
behavior of most operations on hash table will deteriorate.

List of Elements

» 10 » 50 ——|_
e 12 s 32 . G2 —_I_
> 4 I 24 ——L

A Separate Chaining Hash Table

Example : The integers given below are to be inserted in a hash table with 5 locations using
chaining to resolve collisions. Construct hash table and use simplest hash function. 1, 2, 3, 4, 5,
10,21,22 33,34, 15,32, 31, 48, 49, 50

An element can be mapped to a location in the hash table using the mapping function key % 10.

Hash Tahle Location Mapped element
0 5,10, 15, 50
1 1,21, 31
2 2,22 32
3 3,33, 48
4 4 34 49

Hash Table

L 15 |
il
e [
]
= |

> 0|
— 2|
— 2 |
> s |

|

I—'{ﬂ

oy 44y

2. Open Addressing

Separate chaining requires additional memory space for pointers. Open addressing hashing is an
alternate method of handling collision.
In open addressing, if a collision ocours, alternate cells are tried until an empty cell is found.

a. Linear probing

b. CQuadratic probing

c. Double hashing.

a) Linear Probing

In linear probing, whenever there is a collision, cells are searched sequentially [with
wraparound) for an empty cell.

Fig. shows the result of inserting keys {5,18,55,78,35,15} using the hash function (f{key)=
key#:10) and linear probing strategy.

Empty After After After After After After
Table 5 18 55 78 35 15
0 15
1
2
3
4
5 5 5 5 5 5 5
B 55 55 55 55
7 35 35
2 18 18 18 18 13
9 78 78 73

Linear probing is easy to implement but it suffers from " primary clustering”

¢ When many keys are mapped to the same location (clustering), linear probing will not
distribute these keys evenly in the hash table. These keys will be stored in neighborhood of
the location where they are mapped. This will lead to clustering of keys around the point of
collision

b) Quadratic probing

One way of reducing "primary clustering” is to use quadratic probing to reschee collision.
Suppose the "key” is mapped to the location j and the cell j is already occupied. In quadratic
probing, the location j, (j+1), (ji+4), (j+9), ... are examined to find the first empty cell where the
key is to be inserted.

This table reduces primary clustering.

It does not ensure that all cells in the table will be examined to find an empty cell. Thus, it may
be possible that key will not be inserted even if there is an empty cell in the table.

c) Double Hashing

This method requires two hashing functions f1 (key) and 2 (key).

Problem of clustering can easily be handled through double hashing.

Function f1 (key] is known as primary hash function.

In case the address obtained by f1 (key) is already occupied by a key, the function 2 (key) is
evaluated.

The second function f2 (key) is used to compute the increment to be added to the address
obtained by the first hash function f1 (key) in case of collision.

The search for an empty location is made successively at the addresses f1 (key) + f2{key),
1 (key) + 272 (key), 1 (key] + 3f2(key], ...

SORTING

Introduction
Sorting is the process of arranging items in a certain sequence or in different sets

The main purpose of sorting information is to optimize it's usefolness for a specific
tasks.

Sorting is one of the most extensively researched subject because of the need to speed up
the operations on thouwsands or millions of records during a search operation.

Types of Sorting :
Internal Sorting

An internal sort is any data sorting process that takes place entirely within the main
memotry of a computer.

This is possible whenever the data to be sorted is small enough to all be held in the main
MEMOTY.

For sorting larger datasets, it may be necessary to hold only a chunk of data in memeoery at
a time, since it won't all fit.

The rest of the data is normally held on some larger. but slower medinm, like a hard-disk.

Any reading or writing of data to and from this slower media can slow the sorting process
considerably

External Sorting

Many impertant sorting applications involve processing very large files, much too large
to fit into the primary memory of any computer.

Methods appropriate for such applications are called external methods, since they involve
a large amount of processing external to the central processing unit.

There are two major facters which make external algorithms quite different: f

First, the cost of accessing an item is orders of magnitude greater than any bockkeeping
or calculating costs. f

Second. over and above with this higher cost. there are severe restrictions on access,
depending on the external storage medinm wsed: for example, items on a magnetic tape
can be accessed only in a sequential manner

Bubble sort

s Bubble sort, sometimes referred as sinking sort.

s |t is a simple sorting algorithm that works by repeatedly stepping through the list to be sorted,

comparing each pair of adjacent items and swapping them if they are in the wrong order.

¢ The pass through the list is repeated until no swaps are needed, which indicates that the list is

sorted.

& The algorithm gets its name from the way smaller elements "bubble" to the top of the list.

s Asit only uses comparisons to operate on elements, it is a comparison sort.

s Although the algorithm is simple, it is too slow for practical use, even compared to insertion sort.

Algorithm
fori< 1tondo
for j < 1ton-ido
If Array[j] > Array[j+1] then
temp < Array[j]
Array[j] < A [j+1]
Array[j+1] « temp

Program
#include <stdio.h=

void main()

{

int array[100], n, i, j, temp;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (i=0;1<n;i++)

{
scanf("%d", &arrayli]);
}
for (i=0;i<{n-1)i++)
{

for(j=0;j<n-c-1;j++)

{

if (array[j] > array[j+1])

{

/* For decreasing order use < */

/* For decreasing order use < */

temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;

}

printf("Sorted list in ascending order:\n");
for (i=0;i<n;i++)
{

printf("%d\n", array[i]);

}
getch();

Example
Consider an array A of 5 element

Afo]| 43

Al1]| 34

A[2]| 56

A[3]| 23

Al4]| 12

Pass-1: The comparisons for pass-1 are as follows.
Compare A[0] and A[1]. Since 45>34, interchange them.
Compare A[1] and A[2]. Since 45<56, no interchange.
Compare A[2] and A[3]. Since 5623, interchange them.
Compare A[3] and A[4]. Since 5612 interchange them.

At the end of first pass the largest element of the array, 56, is bubbled up to the last position in the

array as shown.

45

34

34

34

34

34

45

45

a5

56

56

36

23

23

23

23

23

A

56

12

12

12

12

12

:I 56 | Largest element

Pass-2: The comparisons for pass-2 are as follows.

Compare A[0] and A[1]. Since 34<45, no interchange.

Compare A[1] and A[2]. Since 45>23, interchange them.

Compare A[2] and A[3]. Since 45>12, interchange them.

34

34

34

34

45

.

23

23

23

23

N

45

12

12

12

12

A

45

Second Largest element

55

56

56

56

Pass-3: The comparisons for pass-3 are as follows.

Compare A[0] and A[1]. Since 34>23, interchange them.

Compare A[1] and A[2]. Since 34>12, interchange them.

34

23

12

45

v

F

23

34

12

36

.

23

12

34

Third Largest element

45

56

Pass-4: The comparisons for pass-4 are as follows.

Compare A[0] and A[1]. Since 23>12, interchange them.

23 12
12] 3
24 34 | Sorted Array
45 45
36 56

Selection Sort

* The idea of algorithm is quite simple.

* Array is imaginary divided into two parts - sorted one and unsorted one.

» At the beginning, sorted part is empty, while unsorted one contains whole array.

* At every step, algorithm finds minimal element in the unsorted part and adds it to the end of the sorted one.
* When unsorted part becomes empty, algorithm stops.

Algorithm

SELECTION_SORT (A)
fori<1ton-1do
min < i;
forj¢«i+1tondo
If A[j] < A[i] then
min < j
If min!=i then
temp < Alf]
A[i] < A [min]
A[min] & temp

Program

#include <stdio.h>

void main()

{
int array[100], n, i, j, min, temp;
printf{"Enter number of elements\n");
scanf("%d", &n);
printf{"Enter %d integers\n", n);
for(i=0;i<n;i++)

{
scanf("%d", &array[i]);
}
for(i=0;i<(n-1);i++)
{
min = i;
for(j=i+1;j<n;j++)
{
if (array[min] > array[j])
min =j;
}
if (minl=1i})
{
temp = array[i];
array[i] = array[min];
array[min] = temp;
}
}

printf{"Sorted list in ascending order:\n");
for(i=0;i<n;i+)
{

printf("%d\n", array[i]);

}
getch();

Example

Unsorbed Arrey

Step—1: 5 1 |12 | -5 | 18| 2 1z | 14
Step - I 51 |12 (-5 |18 | 2 |12 | 14 Exchargs 3 and -3
Sorted Sub Array I Unsorted Sub Array
Step -3 =5 1 12 5 15 2 1z | 14 Mo Exchange
&
Sorted Sub Arrsy | Unsorted Sub Array
Step - 4: % |1 |12 | 5 |16)| z |12 14 Exchange 12 and 2
] x
Sorted Sub Array || Unsorbed Sub Array
Step - 5: 51| o2 5 | 15 | 12 | 12 | 14 Ho Exchange
Sorted Sub Ay Ursorted Sub Array

- Exchangze 16 and 12

Step - 6: 5 1 2 E | 15 | 12| 12 | 14 H
Sorted Sub &rray | Unsorted Sub Anray

r Exchange 15 and 12

step - 7: 5 1 2 5 i1z | 18 | 12 | 12 =
Sorted Sub Array | Umnsorted Sub Array
Step - B: -5 1 2 5 iz | 12 16 | 14 Exchange 1€ and 12
Sorted Sub Array

Step—o: -5 1 2 E | 12 | 12| 14 | 15 End of the Arrey

Quick Sort

Quicksort is the currently fastest known sorting algorithm and is often the best practical choice for sorting,
as its average expected running time is O{n log(n)).
Pick an element, called a pivot, from the array.

Reorder the array so that all elements with values less than the pivot come before the pivot, while all
elements with values greater than the pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the partition operation.

Recursively apply the above steps to the sub-array of elements with smaller values and separately to the

sub-array of elements with greater values.

Quicksort, like merge sort, is a divide-and-conquer recursive algorithm.

The basic divide-and-conquer process for sorting a sub array A[i.,j] is summarized in the following three easy

steps:

o Divide: Partition T[i..j] Into two sub arrays T[i../-1] and T[/+1... j] such that each element of T[i.[-1] is
less than or equal to T[/], which is, in turn, less than or equal to each element of T[/+1... j]. Compute the
index [as part of this partitioning procedure
Conquer: Sort the two sub arrays T[i..I-1] and T[/+1... j] by recursive calls to quicksort.

Combine: Since the sub arrays are sorted in place, no work is needed to combing them: the entire array
T[7..f] is now sorted.

Algorithm

Procedure pivot (T [i... j1; var)
{Permutes the elements in array T [i_.. j] and returns a value | such that, at the end, i<=Il<=j,
T(k] <=P foralli <k <1, T[I] =P, and T[k] = P for all | < k <j, where P is the initial value T[i]}
P& T[]
K& i< j+1
Repeat k < k+1 until T[k] > P
Repeat [< F1until T[/] <P
While k< I do
Swap T[k] and T[/]
Repeat k < k+1 until T[k] > P
Repeat /[< -1 until T/ < P
Swap T[i] and T[I]

Procedure quicksort (T [i... j])

{Sorts sub array T [i... j] into non decreasing order}
if j — i is sufficiently small then insert (T[i, .._..j])
else

pivot (T[Z,...71,])

quicksort (T[i,..., [- 1])

quicksort (T[/+1,...,j]

Example

Sort given array using Quick Sort: 2 87|13 |5 |6

i P,j r

(a) 2(a|7]|1]|3|5|6]|a

Poi j r

] 2| |7|1|3|5|6]a

P,i j r

lc) 2|l8|7|1|3|5|6]a

P,i j r

(d) 2|leg|7]|1|3|5|6|a
Exchange 8 and 1

P i i r

(=) 217|832 |5|6]a
P i j r Exchange 7 and 3

[f) 2(1|3]s|7]|s|6]|a

P i j r

] 2(1|3]s|7|5]|6]|a

F i r

(k) 2|1|ale|7|s5]|6]|a
Exchange & and 4

P i r

(i) 2|13 7|5 |6 |8

213 a4 75|68

Left Sub Array

Right Sub Array

Apply same method for left and right sub array finally we will get sorted

Merge Sort

* The merge sort algorithm is based on the classical divide-and-conguer paradigm. It operates as follows:

o DIVIDE: Partition the n-slement sequence to be sorted into two subsequences of n/2 elements each.

o COMNQUER: Sort the two subsequences recursively using the merge sort.

o COMBINE: Merge the two sorted subsequences of size n/2 each to preduce the sorted sequence
consisting of n elements.

* Mote that recursion "bottoms out” when the sequence to be sorted is of unit length.

* Since every sequence of length 1 is in sorted order, no further recursive call is necessary.

* The key operation of the merge sort algorithm is the merging of the two sorted sub sequences in the
"combine step”.

* To perform the merging, we use an auxiliary procedure Merge (A p,q,r), where A isan array and p,q and r
are indices numbering elerments of the array such that procedure assumes that the sub arrays Alp..q] and
Alg+1..r] are in sorted crder.

* |tmerges them to form a single sorted sub array that replaces the current sub array Alp..r]. Thus finally, we

obtain the sorted array A[1..n], which is the solution.

Algorithm
MERGE (4,p.q.r]
nl=g -p+1
n2=r—q
let L[1...n1+1] and R[1...n2+1] be new arays
fori=1toni
L[i] = A[p+i-1]
forj=1ton2
R0l = Alg+]

LIn1+1] = infinite:
R[n2+1]= infinite
i=1

j=1
fork=ptor
if L[i] = R[j]
Alk]=L[i]
i=i+l
else Alk] = R[j]
j=i+1
MERGE SORT [A4,p,r)
fp=r
then g<—[{p+r) /2]
MERGE SORT(A.p.q)

MERGER SORT[4,q + L.r]
MERGE(A,p,q,1)

Example

Sort given array using merge sort | 38 | 27 | 43 3 9 82 10

3B 27

<

10

.\d!-
N\

A2 BA G N o |
\ \ /\
38 27 43 3 9 a2 10
NSNS /
27 38 3 43 9 82 10

— N

3 27 38 43) 10 a2

—

10 27 38 43 a2

&5
[¥<)

Linear/Sequential Search

* |n computer science, linear search or sequential search is a method for finding a particular value in a list that
consists of checking every one of its elements, one at a time and in sequence, until the desired one is found.

* Linear search is the simplest search algonthm.

* |tis a special case of brute-force search. Its worst case cost is proportional to the number of elements in the

list.
Algorithm

Input: Array A, integer key
Qutput: first index of key in A,
or -1 if not found

Algorith: Linear_Search
for i =0 to last index of A:
if Afi] equals key:
retuwrn i
return -1

Program
#include <stdio.h>

woid main(]

{

int array[100], key, i, n;

printf{"Enter the number of elements in arrayhn"};
scanf{"%d",&n);

printf{"Enter %d integer({s}\n", nj;
for {i=0; i < m; i++)
{

printf{"Array[%d])=", i|;
scanf|™%d", &array[i]];

printf{"Enter the number to searchyn”);
scanf{"%d", &key);

for (i =0; i < m; i+4)

{
if (array[i] == key] J* if required element found */
{
printf{"%d is present at location %d.\n", key, i+1);
break;
}
1
if (i==n)
{
printfi{"%d is not present in array.\n", search);
1
getch();

Example

Search for 1 in given array: 2 9 3 1 8

Comparing value of i" index with element to be search one

by one until we get seache element or end of the amay

{a) 2 9 3 1 B
.f
i
(b) 2|9 (3|18
i
(<) 2 9 3 1 8
+
i
[d} 2 9 3 1 B
+
i
Binary Search

Element found at i index

* [fwe have an array that is sorted, we can use a much more efficient algorithm called a Binary Search.

* |n binary search each time we divide array into two equal half and compare middle element with search

element.

* |f middle element is equal to search element then we got that element and return that index otherwise if

middle element is less than search element we look right part of array and if middle element is greater than

search element we look left part of array.
Algorithm

Input: Sorted Array A, integer key
Output: first index of key in A, or -1 if not found

Algorith: Binary_Search (A, left, right)
while left <= right
middle = index halfway between left, right
if D[middle] matches key
return middie
elsz if key less than A[middle]
right = middle -1
else
left = middle + 1
return -1

Program
Finclude <stdio.h>

void main()

{

first =0;

int i, first, last, middle, n, key, array[100];

printf{"Enter number of elementsin"];
scanf{"%d" &n);

printf["Enter %d integers in sorted orderin”, nj;
for (i=0;i<n;H+)

scanf|"%d", Barray[i]};

printf("Emter value to find\n");
scanf|{"%d", Bkey);

last=m-1;
middle = {firstHast)/2;

while{ first <= last)

{

1

if (array[middie] == key)

{
printf{ "%d found at location %d.\n", key, middle+1);
break;

}

else if | array[middle]=key)

{
Last=middle - 1;

1

else

first = middle + 1;

middle = (first + last]/2;

if | first = last)

{

b

getch();

printfi{"Mot found! %d is not present in the list.\n", key);

Example

Find 6in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

Step 1--= (middle element is 19 > &): Search in left part
;156138 19 2% 46 78 102 114

Step 2 --= (middle element is 5 < &): Search in Right part
-1 L 6 18

Step 3 --= (middle element is & == &): Element Found
[13

